GENERAL INFORMATION

author(s) | Muys B, Lust N, Granval P
year | 1992
English title | Effects of grassland afforestation with different tree species on earthworm communities, litter decomposition and nutrient status
original title | reference
page | 1459-1466
type | article (a1)
ecosystem service | supporting – soil formation and fertility
keywords | species effect – earthworms – afforestation
taxa | Quercus palustris, Tilia platyphyllos, Prunus avium, Alnus glutinosa, Fraxinus excelsior
project | PhD_Muys
supervisor | Lust N
institution | Ghent University, Laboratory of Forestry
document | hardcopy, pdf
data

MATERIALS & METHODS

study area | 3b, 5h, 5k, 5m, 5n
goal | Comparison of the physical and chemical soil properties, earthworm communities, production/decomposition of litter between (1) pasture land afforestations with different tree species, (2) a meadow, and (3) ‘ancient’ forest with two species
set-up | - 8 sample sites
- 5 pasture land afforestations: Quercus palustris, Tilia platyphyllos, Prunus avium, Alnus glutinosa, Fraxinus excelsior (planted in 1970)
- 2 ‘ancient’ forest stands: Quercus robur, Fraxinus excelsior (planted in 1920)
- 1 meadow
- 5 permanent plots per site (established in 1987)
data collection | - earthworms: see Muys (1989)
- litter production: litter traps: dry mass per fraction
- biomass herb layer: sum aboveground biomass
- Ao layer:
 - Litter decomposision rates: litter bags (mesh 1.5 mm and 8 mm) with litter of the studied stand and 6 reference litters: mass loss after 1, 2.5, 6, 12, 24 months
- Chemical analysis of soil, litter, herb layer, Ao layer
remarks

RESULTS

Striking differences in earthworm biomass and community structure, thickness and quality of the holorganic layer, soil pH between the different tree species, 20 years after the afforestation. The stands were classified into a chemically and biologically rich group with mull humus (Fraxinus, Alnus, Prunus, Tilia) and a slow-cycling group with moder or developing moder humus (Quercus). In the mull group, there were two subgroups: sandier and dry soils with anecic earthworms (Tilia, Prunus) and an anecic-poor group (Fraxinus, Alnus).
Topsoil is fairly rich in the young forests, degraded in the old forest stands (higher organic matter, high amounts of Fe and Al. Litter palatability is higher for Fraxinus, Tilia, Prunus, Alnus than for the two Quercus species. Consequently, the litter layer is thin and discontinuous in Fraxinus, Prunus, Alnus and Tilia stands (dry mass < 2000 kg/ha in summer). In the young Quercus palustris, an F layer occurs between the L layer and the mineral soil (7300 kg/ha). The moder humus in the mature Quercus robur stand was 70 000 kg/ha.

Earthworm biomass is higher in the young stands and comparable to the meadow (1020 kg/ha), except for Quercus palustris (340 kg/ha). In the old stands the biomass is 390 kg/ha (Fraxinus) and 25 kg/ha (Quercus). In the Prunus and Tilia stands, the litter, even unpalatable litter, decomposes very fast, mainly due to anecic earthworms. If all litter is palatable, active mull humus can be maintained by fairly small anecic populations (Alnus, old Fraxinus). In the Quercus palustris stand, 40% of poor litter (C/N > 32) lead towards the formation of moder humus and litter accumulation.